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%= 
The meta-photoadditions of cis-cyclooctene to anisole and toluene are shown to pro- 

tee via 2,6-bonding to the aromatic rings, in contrast to previous reports. 

The 1,3- or meta-addltlon of olefins to singlet excited benzene denvatlves has generated 

much interest,' both from a purely mechanlstlc standpoint and as a synthetic route to natural 

products 233 Despite extensive investigations, the mechanism of these reactions is unclear.' 

A maJor point of controversy centers on the timing of addition. Bryce-Smith and Longuet- 

Higgens made the early suggestlon that the reaction began with 1,3-closure of excited singlet 

benzene to give blradlcal 1 4 Addition of olefln across the radical centers would give the 

observed products. Snnlvasan and coworkers showed, however, that photoadditions of a number of 

olefins to toluene'andto anTsole give products with the aryl substltuent appearing solely at 

the l-position. This regloselectlvlty suggested lnltlal interaction between the olefln and the 

. 

"1 6 + [jL 

A R1=R2=R3=H 

3 R1=Me,R2=R3=H 

4 R3=Me,R1=R2=H 

5 R2=OMe;R,=R3=H 

2,6-positions of the aromatic ring, either through direct bonding to give a blradlcal such as 2 

or E prior exclplex formation with this geometrical arrangement. In particular, the absence 

of corresponding 2-substltuted products appeared to exclude the intermediacy of biradical 3. 

It has recently been reported that the reglochemistry of cyclooctene photoaddition to sub- 

stituted aromatic compounds 1s anomalous 

give the 5-lsomer7, 

Cls-cyclooctene was suggested to add to toluene to - 

and to anlsole to give 8-lsomer8. These results have been cited as strong 

evidence for the intermediacy of the blradlcals 4 and 5. 

We now wish to report a relnvestlgatlon of the cyclooctene photoaddltlons. Higher field 

NMR data, deutenum labelllng, and chemical transformations reveal that cyclooctene adds to 
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both toluene and anisole to give the same reglochemistry as observed for other olefins 

A mixture of anlsole and cis-cyclooctene (1 3 by volume) was irradiated at 254 nm for 12 h. - 

NMR ('H, 270 MHz) of the crude product mixture, after removal of starting materials in vacua and -- 

distillation (80°C, 0.1 Torr), showed the presence of primarily two components in the ratio of 

ca. 7 1 (30% estimated yield of maJor compound). The main component, isolated by GLC (Carbowax, 

185'C), exhibits an 'H-NMR spectrum (Figure 1) which IS quite slmllar to those reported by Ors 

and Snnjvasan6 for other cycloalkene-anisole endo-adducts, and supports the l-isomer, 6, 
9,lO 

NMR (270 MHz, CDC13) 8 5.71 (d of d, H-13), 5.64 (d of d of d, H-12), 3.37 (s, OMe), 3 68 (m, 

H-11), 2.63 (m, H-lo), 2 52 (m, H-3), 2.33 (d of d, H-2), 1.98 (d of d of d, H-14), 1.75-1.00 

(complex, H's at 4-9). The proton assignments were confirmed by double lrradlatlon experiments, 

and by the NMR spectra ('H and 2D) of the analogous d5-adduct from d5-anisole. Several decoupl- 

ing results are shown in Figure 1. The key points in locating the methoxy-substltuent are. 

(1) Three aliphatic protons (H-2,H-ll,H-14) derive from anisole; (2) Two of these protons (H-2 

and H-14) are coupled to each other (u2 14 =8.5 Hz) and neither is coupled to the third proton 

(H-11), (3) H-14 is coupled to the downlfield vinyl H-13 (u13 14=2.3 Hz) and not to the cyclo- 

octyl derived protons H-3 and H-10, (4) H-2 is coupled to the'cyclooctane proton H-3 (v2 3=6.8 

Hz), and not coupled to either olefinlc proton, (5) H-11 IS coupled to the upfield olefI;lc 

proton, H-12, and to both H-3 and H-10 (models indicate a reasonable W-relatlonshlp between 

H-3 and H-11). I 1 

Figure 1. Bottom shows two portions of 'H-NMR spectrum (270 MHz) of anlsole adduct 6. 
Upper plots show effects of decoupling at positions shown by arrows 

The position of methoxy substitution was confirmed by the chemistry of 6 Srinivasan 

and coworkers have shown that acid catalyzed hydrolysis of meta-photoadducts specIfIcally 

effects cyclopropane cleavage to give blcyclo[3.2 l]octene derivatives. 5s6 Treatment of 6 
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with dilute aqueous acid ln refluxlng acetone cleanly gives the expected ketone 7." The same 

ketone was generated from the endo-cyclooctene-benzene photoadduct 8, by the sequence shown. 

The simplification of the 13 C-NMR spectrum of 7 (14 lines) on hydrogenation to 9 (8 lines) lends 

support to the structure assignment In particular, other possible structures such as 10 can be __ _S 

Toluene and cis-cyclooctene (1:3) were irradiated and the volatile products isolated ln - 
an identical fashion as above. 1 H-NMR of crude distilled (68"C, 0.25 Torr) material showed 

mainly the presence of two isomers in a ratio of ca. 6:l (10% estimated yield of main com- 

ponent) lo The lH-NMR of the main product, isolated by GLC (carbowax, 140°C), 1s most con- 

sistent with the l-isomer, ll_; NMR (270 MHz, COC13) 6 5.69 (d of d, H-13), 5.52 (d of d, H-12), 

2.61 (m, H-11), 2.47 (m, H-10 and H-3), 1 67 (H-2, partially obscured by cyclooctane protons), 

1.40 (H-14, partially obscured), 1.36 (s, -CH3), 1.85-1.06 (complex, H's at 4-9). Although 

in this case the cyclopropyl protons are partially obscured by the cyclooctane nng protons, 

the effects of double lrradlatlon were easily discernible. The arguments pointing to structure 

/I, based on 'H-decoupling and 'H- and 20-NMR spectra of the adduct formed from dg-toluene, 

are exactly analogous to those listed above for 6. In particular, the H-11 proton was readily 

characterized by its coupling to the oleflnic proton H-12 and to the cyclooctyl derived protons 

(H-3 and H-lo), and by the lack of coupling to the cyclopropyl protons (H-2 and H-14) 

The chemistry of 11 confirms the assigned structure. Hydrolysis of 11, as above, gives _.., __ 
an alcohol whose spectra support structure 12. Formation of the mesylate and elimination in - _." 
situ with tnethylamine cleanly gives the diene, 13 The same dlene 1s generated on reaction "S 
of ketone 7 with methylenetriphenylphosphorane.ll 

MSCI 

TEA 
65% 

4 
Ph,P=CH, 

7 

78% - 
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The above results indicate that, contr;ary to previous claims, E-cyclooctene acts 

normally in photoadditions to anisole and toluene. These results thus weaken the possibility 

of the involvement of blradlcals such as 1 in the meta-photoaddlhons ln general 12,13 
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